【个人整理】长短是记忆网络LSTM的原理以及缺点

文章正文
发布时间:2024-08-29 18:22

前言:普通的循环神经网络RNN是很难训练的,这导致了它在实际应用中,很难处理长距离的依赖。在本文中,我们将介绍一种改进之后的循环神经网络:长短时记忆网络(Long Short Term Memory Network, LSTM),它成功的解决了原始循环神经网络的缺陷,成为当前最流行的RNN,在语音识别、图片描述、自然语言处理等许多领域中成功应用。本文将大致介绍一下LSTM的工作原理,然后介绍一下它的局限性和缺点。

一、LSTM的结构与原理

    1.1 LSTM核心思想——通过“三个门”对元胞状态进行交互,改变元胞状态所承载的信息

    1.2 LSTM的分步详解

        1.2.1 LSTM的“门介绍”

    1.3 LSTM的三个门详解

        1.3.1 遗忘门

        1.3.2 输入门

        1.3.3 输出门

二、LSTM的局限性

     2.1 LSTM的缺点分析

    2.2 缺点总结

一、LSTM的结构与原理

1.1 LSTM核心思想——通过“三个门”对元胞状态进行交互,改变元胞状态所承载的信息

LSTM的关键是元胞状态(Cell State),下图中横穿整个元胞顶部的水平线。

元胞状态有点像是传送带,它直接穿过整个链,同时只有一些较小的线性交互。上面承载的信息可以很容易地流过而不改变。

LSTM有能力对元胞状态添加或者删除信息,这种能力通过一种叫门的结构来控制。

门是一种选择性让信息通过的方法。它们由一个Sigmoid神经网络层和一个元素级相乘操作组成。

Sigmoid层输出0~1之间的值,每个值表示对应的部分信息是否应该通过。0值表示不允许信息通过,1值表示让所有信息通过。一个LSTM有3个这种门,来保护和控制元胞状态

1.2 LSTM的分步详解

其实,长短时记忆网络的思路比较简单。原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。那么,假如我们再增加一个元胞状态,即c,让它来保存长期的状态,那么问题不就解决了么?如下图所示:

新增加的状态c,称为单元状态(cell state)。我们把上图按照时间维度展开:

上图仅仅是一个示意图,我们可以看出,在t时刻,LSTM的输入有三个:当前时刻网络的输入值 、上一时刻LSTM的输出值 、以及上一时刻的单元状态 ;LSTM的输出有两个:当前时刻LSTM输出值 、和当前时刻的单元状态 。注意上面图中的字母拜师的都是向量

LSTM的关键,就是怎样控制长期状态c。在这里,LSTM的思路是使用三个控制开关。第一个开关,负责控制继续保存长期状态c;第二个开关,负责控制把即时状态输入到长期状态c;第三个开关,负责控制是否把长期状态c作为当前的LSTM的输出。三个开关的作用如下图所示:

接下来,我们要描述一下,输出h和单元状态c的具体计算方法。

1.2.1 LSTM的“门介绍”

前面描述的开关是怎样在算法中实现的呢?这就用到了门(gate)的概念。门实际上就是一层全连接层,它的输入是一个向量,输出是一个0到1之间的实数向量。假设W是门的权重向量, 是偏置项,那么门可以表示为:

门的使用,就是用门的输出向量按元素乘以我们需要控制的那个向量。因为门的输出是0到1之间的实数向量,那么,当门输出为0时,任何向量与之相乘都会得到0向量,这就相当于啥都不能通过;输出为1时,任何向量与之相乘都不会有任何改变,这就相当于啥都可以通过。因为 (也就是sigmoid函数)的值域是(0,1),所以门的状态都是半开半闭的。

LSTM用两个门来控制单元状态c的内容,一个是遗忘门(forget gate),它决定了上一时刻的单元状态 有多少保留到当前时刻 ;另一个是输入门(input gate),它决定了当前时刻网络的输入 有多少保存到单元状态 。LSTM用输出门(output gate)来控制单元状态 有多少输出到LSTM的当前输出值 。

1.3 LSTM的三个门详解

1.3.1 遗忘门

         LSTM的第一步是决定我们将要从元胞状态中扔掉哪些信息。该决定由一个叫做“遗忘门(Forget Gate)”的Sigmoid层控制。遗忘门观察对于元胞状态中的每一个元素,输出一个0~1之间的数。1表示“完全保留该信息”,0表示“完全丢弃该信息”。回到之前的预测下一个单词的例子。在这样的一个问题中,元胞状态可能包含当前主语的性别信息,以用来选择正确的物主代词。当我们遇到一个新的主语时,我们就需要把旧的性别信息遗忘掉。

 


1.3.2 输入门

下一步是决定我们将会把哪些新信息存储到元胞状态中。这步分为两部分。首先,有一个叫做“输入门(Input Gate)”的Sigmoid层决定我们要更新哪些信息。接下来,一个tanh层创造了一个新的候选值,

在语言模型的例子中,我们可能想要把新主语的性别加到元胞状态中,来取代我们已经遗忘的旧值。

还是语言模型的例子,在这一步,我们按照之前的决定,扔掉了旧的主语的性别信息,并且添加了新的信息。

这样,由于遗忘门的控制,它可以保存很久很久之前的信息,由于输入门的控制,它又可以避免当前无关紧要的内容进入记忆。

1.3.3 输出门

最后,我们需要决定最终的输出。输出将会基于目前的元胞状态,并且会加入一些过滤。首先我们建立一个Sigmoid层的输出门(Output Gate),来决定我们将输出元胞的哪些部分。然后我们将元胞状态通过tanh之后(使得输出值在-1到1之间),与输出门相乘,这样我们只会输出我们想输出的部分。

对于语言模型的例子,由于刚刚只输出了一个主语,因此下一步可能需要输出与动词相关的信息。举例来说,可能需要输出主语是单数还是复数,以便于我们接下来选择动词时能够选择正确的形式。

二、LSTM的局限性

      循环神经网络(RNN),长短期记忆(LSTM),在现在都得到了广泛的应用。LSTM和RNN被发明于上世纪80、90年代,于2014年死而复生。接下来的几年里,它们成为了解决序列学习、序列转换(seq2seq)的方式,这也使得语音到文本识别和Siri、Cortana、Google语音助理、Alexa的能力得到惊人的提升。另外,不要忘了机器翻译,包括将文档翻译成不同的语言,或者是神经网络机器翻译还可以将图像翻译为文本,文字到图像和字幕视频等等。

      在接下来的几年里,ResNet出现了。ResNet是残差网络,意为训练更深的模型。2016年,微软亚洲研究院的一组研究员在ImageNet图像识别挑战赛中凭借惊人的152层深层残差网络(deep residual networks),以绝对优势获得图像分类、图像定位以及图像检测全部三个主要项目的冠军。之后,Attention(注意力)模型出现了。所有的大型科技企业企业已经将RNN及其变种替换为基于注意力的模型。因为比起基于注意力的模型,RNN需要更多的资源来训练和运行。

2.1 LSTM的缺点分析

记住:不管是RNN还是LSTM及其衍生主要是随着时间推移进行顺序处理。请参阅下图中的水平箭头:

 

水平箭头的意思是长期信息需在进入当前处理单元前顺序遍历所有单元。这意味着其能轻易被乘以很多次<0的小数而损坏。这是导致vanishing gradients(梯度消失)问题的原因。

为此,今天被视为救星的LSTM模型出现了,有点像ResNet模型,可以绕过单元从而记住更长的时间步骤(LSTM之所可以解决梯度问题是因为它避免了无休止的连乘,而是边加边乘,这和resnet本身就是异曲同工的)。因此,LSTM可以消除一些梯度消失的问题。

 

从上图可以看出,这并没有解决全部问题。我们仍然有一条从过去单元到当前单元的顺序路径。事实上,这条路现在更复杂了,因为它有附加物,并且忽略了隶属于它上面的分支。毫无疑问LSTM和GRU(Gated Recurrent Uni,是LSTM的衍生)及其衍生能够记住大量更长期的信息!但是它们只能记住100个量级的序列,而不是1000个量级,或者更长的序列

      还有一个RNN的问题是,训练它们对硬件的要求非常高。另外,在我们不需要训练这些网络快速的情况下,它仍需要大量资源。同样在云中运行这些模型也需要很多资源。训练RNN和LSTM的噩梦,RNN和LSTM的训练是困难的,因为它们需要存储带宽绑定计算,这是硬件设计者最糟糕的噩梦,最终限制了神经网络解决方案的适用性。简而言之,LSTM需要每个单元4个线性层(MLP层)在每个序列时间步骤中运行。线性层需要大量的存储带宽来计算,事实上,它们不能使用许多计算单元,通常是因为系统没有足够的存储带宽来满足计算单元。而且很容易添加更多的计算单元,但是很难增加更多的存储带宽(注意芯片上有足够的线,从处理器到存储的长电线等)。因此,RNN/LSTM及其变种不是硬件加速的良好匹配,

2.2 缺点总结

(1)RNN的梯度问题在LSTM及其变种里面得到了一定程度的解决,但还是不够。它可以处理100个量级的序列,而对于1000个量级,或者更长的序列则依然会显得很棘手。

(2)计算费时。每一个LSTM的cell里面都意味着有4个全连接层(MLP),如果LSTM的时间跨度很大,并且网络又很深,这个计算量会很大,很耗时。