[1]
Lee CT, Huang YW, Zhu L, et al. Prevalences of peri-implantitis and peri-implant mucositis: syste-matic review and Meta-analysis[J]. J Dent, 2017,62:1-12.
doi: 10.1016/j.jdent.2017.04.011
pmid: 28478213
[2]
李维婷, 朴牧子, 李慧, 等. 种植体周围疾病发病率及危险因素的研究[J]. 口腔医学研究, 2017,33(7):758-761.
Li WT, Pu MZ, Li H , et al. Study on prevalence and risk indicators for peri-implant disease[J]. J Oral Sci Res, 2017,33(7):758-761.
[3]
Caton JG, Armitage G, Berglundh T, et al. A new classification scheme for periodontal and peri-im-plant diseases and conditions-Introduction and key changes from the 1999 classification[J]. J Clin Perio-dontol, 2018,45(Suppl 20):S1-S8.
[4]
Sanz-Martin I, Doolittle-Hall J, Teles RP, et al. Ex-ploring the microbiome of healthy and diseased peri-implant sites using illumina sequencing[J]. J Clin Periodontol, 2017,44(12):1274-1284.
doi: 10.1111/jcpe.12788
pmid: 28766745
[5]
Mombelli A, Décaillet F. The characteristics of bio-films in peri-implant disease[J]. J Clin Periodontol, 2011,38(Suppl 11):203-213.
doi: 10.1111/jcpe.2011.38.issue-s11
[6]
Renvert S, Aghazadeh A, Hallström H, et al. Factors related to peri-implantitis—a retrospective study[J]. Clin Oral Implants Res, 2014,25(4):522-529.
doi: 10.1111/clr.12208
pmid: 23772670
[7]
Renvert S, Quirynen M. Risk indicators for peri-implantitis. A narrative review[J]. Clin Oral Implants Res, 2015,26(Suppl 11):15-44.
[8]
Dalago HR, Schuldt Filho G, Rodrigues MA, et al. Risk indicators for peri-implantitis. A cross-sectional study with 916 implants[J]. Clin Oral Implants Res, 2017,28(2):144-150.
doi: 10.1111/clr.12772
pmid: 26754342
[9]
Rodrigo D, Sanz-Sánchez I, Figuero E, et al. Preva-lence and risk indicators of peri-implant diseases in Spain[J]. J Clin Periodontol, 2018,45(12):1510-1520.
doi: 10.1111/jcpe.13017
pmid: 30289569
[10]
Mouhyi J, Dohan Ehrenfest DM, Albrektsson T. The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects[J]. Clin Implant Dent Relat Res, 2012,14(2):170-183.
doi: 10.1111/j.1708-8208.2009.00244.x
pmid: 19843108
[11]
Canullo L, Genova T, Wang HL, et al. Plasma of argon increases cell attachment and bacterial decon-tamination on different implant surfaces[J]. Int J Oral Maxillofac Implants, 2017,32(6):1315-1323.
doi: 10.11607/jomi.5777
pmid: 29140375
[12]
Idlibi AN, Al-Marrawi F, Hannig M, et al. Destruc-tion of oral biofilms formed in situ on machined titanium (Ti) surfaces by cold atmospheric plasma[J]. Biofouling, 2013,29(4):369-379.
[13]
Rupf S, Idlibi AN, Marrawi FA, et al. Removing bio- films from microstructured titanium ex vivo: a novel approach using atmospheric plasma technology[J]. PLoS One, 2011,6(10):e25893.
doi: 10.1371/journal.pone.0025893
pmid: 22016784
[14]
Schwarz F, Nuesry E, Bieling K, et al. Influence of an erbium, chromium-doped yttrium, scandium, gal-lium, and garnet (Er, Cr: YSGG) laser on the reestab-lishment of the biocompatibility of contaminated titanium implant surfaces[J]. J Periodontol, 2006,77(11):1820-1827.
doi: 10.1902/jop.2006.050456
pmid: 17076606
[15]
Strever JM, Lee J, Ealick W, et al. Erbium, chromium: yttrium-scandium-gallium-garnet laser effectively ablates single-species biofilms on titanium disks without detectable surface damage[J]. J Periodontol, 2017,88(5):484-492.
[16]
Al-Hashedi AA, Laurenti M, Benhamou V, et al. Decontamination of titanium implants using physical methods[J]. Clin Oral Implants Res, 2017,28(8):1013-1021.
doi: 10.1111/clr.12914
pmid: 27392811
[17]
Kreisler M, Kohnen W, Christoffers AB, et al. In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er: YAG laser and an air powder system[J]. Clin Oral Implants Res, 2005,16(1):36-43.
doi: 10.1111/j.1600-0501.2004.01056.x
pmid: 15642029
[18]
Giannelli M, Landini G, Materassi F, et al. The effects of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide surface of dental implants. An in vitro study[J]. Lasers Med Sci, 2016,31(8):1613-1619.
doi: 10.1007/s10103-016-2025-5
pmid: 27475996
[19]
Hauser-Gerspach I, Mauth C, Waltimo T, et al. Effects of Er: YAG laser on bacteria associated with titanium surfaces and cellular response in vitro[J]. Lasers Med Sci, 2014,29(4):1329-1337.
[20]
Eick S, Meier I, Spoerlé F, et al. In vitro-activity of Er: YAG laser in comparison with other treatment modalities on biofilm ablation from implant and tooth surfaces[J]. PLoS One, 2017,12(1):e0171086.
doi: 10.1371/journal.pone.0171086
pmid: 28125700
[21]
Ayubianmarkazi N, Karimi M, Koohkan S, et al. An in vitro evaluation of the responses of human osteo-blast-like SaOs-2 cells on SLA titanium surfaces irradiated by different powers of CO2 lasers[J]. Lasers Med Sci, 2015,30(8):2129-2134.
doi: 10.1007/s10103-015-1756-z
pmid: 25958169
[22]
Ayobian-Markazi N, Fourootan T, Zahmatkesh A. An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells to SLA titanium surfaces irradiated by erbium: yttrium-aluminum-garnet (Er: YAG) lasers[J]. Lasers Med Sci, 2014,29(1):47-53.
[23]
Momber A. Blast cleaning technology[M]. Heidelberg: Springer-Verlag, 2008.
[24]
Conserva E, Pisciotta A, Bertoni L, et al. Evaluation of biological response of STRO-1/c-kit enriched human dental pulp stem cells to titanium surfaces treated with two different cleaning systems[J]. Int J Mol Sci, 2019,20(8):E1868.
doi: 10.3390/ijms20081868
pmid: 31014017
[25]
Drago L, Del Fabbro M, Bortolin M, et al. Biofilm removal and antimicrobial activity of two different air-polishing powders: an in vitro study[J]. J Perio-dontol, 2014,85(11):e363-e369.
[26]
Drago L, Bortolin M, Taschieri S, et al. Erythritol/chlorhexidine combination reduces microbial biofilm and prevents its formation on titanium surfaces in vitro[J]. J Oral Pathol Med, 2017,46(8):625-631.
doi: 10.1111/jop.12536
pmid: 27935124
[27]
Matthes R, Duske K, Kebede TG, et al. Osteoblast growth, after cleaning of biofilm-covered titanium discs with air-polishing and cold plasma[J]. J Clin Periodontol, 2017,44(6):672-680.
doi: 10.1111/jcpe.12720
pmid: 28303583
[28]
Petersilka GJ. Subgingival air-polishing in the treatment of periodontal biofilm infections[J]. Periodontol 2000, 2011,55(1):124-142.
pmid: 21134232
[29]
Moharrami M, Perrotti V, Iaculli F, et al. Effects of air abrasive decontamination on titanium surfaces: a systematic review of in vitro studies[J]. Clin Implant Dent Relat Res, 2019,21(2):398-421.
doi: 10.1111/cid.12747
pmid: 30838790
[30]
Gosau M, Hahnel S, Schwarz F, et al. Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm[J]. Clin Oral Implants Res, 2010,21(8):866-872.
pmid: 20666798
[31]
Charalampakis G, Ramberg P, Dahlén G, et al. Effect of cleansing of biofilm formed on titanium discs[J]. Clin Oral Implants Res, 2015,26(8):931-936.
doi: 10.1111/clr.12397
pmid: 24734854
[32]
Kotsakis GA, Lan CX, Barbosa J, et al. Antimicrobial agents used in the treatment of peri-implantitis alter the physicochemistry and cytocompatibility of titanium surfaces[J]. J Periodontol, 2016,87(7):809-819.
doi: 10.1902/jop.2016.150684
pmid: 26923474
[33]
Dostie S, Alkadi LT, Owen G, et al. Chemotherapeutic decontamination of dental implants colonized by ma-ture multispecies oral biofilm[J]. J Clin Periodontol, 2017,44(4):403-409.
doi: 10.1111/jcpe.12699
pmid: 28117914
[34]
Maquera-Huacho PM, Tonon CC, Correia MF, et al. In vitro antibacterial and cytotoxic activities of carvacrol and terpinen-4-ol against biofilm formation on titanium implant surfaces[J]. Biofouling, 2018,34(6):699-709.
doi: 10.1080/08927014.2018.1485892
pmid: 30187780
[35]
Giannelli M, Landini G, Materassi F, et al. Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study[J]. Lasers Med Sci, 2017,32(4):857-864.
doi: 10.1007/s10103-017-2185-y
pmid: 28283813
[36]
Ghasemi M, Etemadi A, Nedaei M, et al. Antimicrobial efficacy of photodynamic therapy using two different light sources on the titanium-adherent biofilms of Aggregatibacter actinomycetemcomitans: an in vitro study[J]. Photodiagnosis Photodyn Ther, 2019,26:85-89.
pmid: 30836212
[37]
Sayar F, Chiniforush N, Bahador A, et al. Efficacy of antimicrobial photodynamic therapy for elimination of Aggregatibacter actinomycetemcomitans biofilm on laser-lok titanium discs[J]. Photodiagnosis Pho-todyn Ther, 2019,27:462-466.
[38]
Kreisler M, Kohnen W, Marinello C, et al. Bacte-ricidal effect of the Er: YAG laser on dental implant surfaces: an in vitro study[J]. J Periodontol, 2002,73(11):1292-1298.
doi: 10.1902/jop.2002.73.11.1292
pmid: 12479633
[39]
Sahrmann P, Ronay V, Hofer D, et al. In vitro cleaning potential of three different implant debridement me-thods[J]. Clin Oral Implants Res, 2015,26(3):314-319.
doi: 10.1111/clr.12322
pmid: 24373056
[40]
Louropoulou A, Slot DE, van der Weijden F. Influence of mechanical instruments on the biocompatibility of titanium dental implants surfaces: a systematic review[J]. Clin Oral Implants Res, 2015,26(7):841-850.
pmid: 24641774
[41]
Lee BS, Shih KS, Lai CH, et al. Surface property alterations and osteoblast attachment to contaminated titanium surfaces after different surface treatments: an in vitro study[J]. Clin Implant Dent Relat Res, 2018,20(4):583-591.
doi: 10.1111/cid.12624
pmid: 29939477
[42]
Daubert DM, Weinstein BF. Biofilm as a risk factor in implant treatment[J]. Periodontol 2000, 2019,81(1):29-40.
doi: 10.1111/prd.12280
pmid: 31407437
[43]
Figuero E, Graziani F, Sanz I, et al. Management of peri-implant mucositis and peri-implantitis[J]. Perio-dontol 2000, 2014,66(1):255-273.