青稞根腐病防病促生细菌的筛选及其菌剂防效

文章正文
发布时间:2024-08-24 12:56

              

PDF
            

 
            

 

引用本文

  0  

许世洋, 李敏权, 刘梅金, 徐冬丽, 漆永红, 周兰兰, 汪学苗, 李风庆, 李雪萍. 青稞根腐病防病促生细菌的筛选及其菌剂防效[J]. 微生物学通报, 2022, 49(7): 2575-2586.

XU Shiyang, LI Minquan, LIU Meijin, XU Dongli, QI Yonghong, ZHOU Lanlan, WANG Xuemiao, LI Fengqing, LI Xueping. Screening of bacteria with biocontrol effects against naked barley root rot accompany with plant growth-promoting properties and the biocontrol effects of the bacterial inoculant[J]. Microbiology China, 2022, 49(7): 2575-2586.

青稞根腐病防病促生细菌的筛选及其菌剂防效

许世洋1 , 李敏权2 , 刘梅金3 , 徐冬丽3 , 漆永红2 , 周兰兰3 , 汪学苗1 , 李风庆3 , 李雪萍1,2

    

1. 甘肃农业大学草业学院, 甘肃   兰州     730070;
2. 甘肃省农业科学院植物保护研究所, 甘肃   兰州     730070;
3. 甘肃省甘南藏族自治州农业科学研究所, 甘肃   合作     747000

收稿日期: 2021-10-23; 接受日期: 2021-12-27; 网络首发日期: 2022-01-20

基金项目: 甘肃省科技计划(20YF3NA021);国家现代农业产业技术体系专项资金(CARS-05);甘肃农业大学学生科研训练计划(SRTP) (202102024)

摘要: 【背景】 由燕麦镰孢(Fusarium avenaceum)和麦根腐平脐蠕孢(Bipolaris sorokiniana)等病原真菌引起的青稞(Hordeum vulgare L. var. nudum Hook. f.)根腐病普遍发生,地毯清洗13825404095对藏区农业生产和发展产生了极大威胁。【目的】 从青稞健康植株根际土壤中筛选具优良防病促生能力的菌株,通过研究菌株间的互作效应以筛选优良菌剂配伍,制作防效优良的防病促生菌剂,以期为青稞根腐病的防治及青稞增产提供优质的菌剂资源。【方法】 采用选择性培养基筛选促生菌株,采用平板对峙法筛选拮抗菌株;采用灌根法和叶面接种法测定菌株致病性;采用乙炔还原法测定固氮能力,钼蓝比色法测定溶磷能力,采用高效液相色谱法测定分泌吲哚乙酸能力;采用16S rRNA基因序列分析鉴定菌种;田间测定菌剂防效,并采用TOPSIS综合分析法进行综合评价。【结果】 共分离出具固氮、溶磷能力菌株23株,并从中筛选得到6株拮抗能力良好的菌株,其中5株溶有机磷、3株溶无机磷、3株固氮菌,而且均分泌吲哚乙酸;测定其致病性发现对青稞、燕麦、油菜、豌豆等采样区常见作物均无致病性;经鉴定分别为枯草芽孢杆菌(Bacillus subtilis) 2株、短小芽孢杆菌(Bacillus pumilus) 1株、蜡样芽孢杆菌(Bacillus cereus) 1株、荧光假单胞菌(Pseudomonas fluorescens) 1株及不动杆菌(Acinetobacter sp.) 1株;优化筛选得到7种优良组合(SC1−SC7),选择其中4种最优组合(SC2、SC4、SC6和SC7)作为菌剂配方,制作液剂、粉剂和颗粒剂3种剂型菌剂,田间小区测定其防效,发现组合SC7 (短小芽孢杆菌Xpq-3、蜡样芽孢杆菌Xpq-15和不动杆菌Xpq-21)液剂防病促生效果最佳。【结论】 青稞根围土壤中存在有优良的防病促生菌株,利用其制作的菌剂对青稞根腐病有良好的防效。

关键词: 青稞    根腐病    生防菌    植物根际促生菌    

Screening of bacteria with biocontrol effects against naked barley root rot accompany with plant growth-promoting properties and the biocontrol effects of the bacterial inoculant

XU Shiyang1 , LI Minquan2 , LIU Meijin3 , XU Dongli3 , QI Yonghong2 , ZHOU Lanlan3 , WANG Xuemiao1 , LI Fengqing3 , LI Xueping1,2

    

1. College of Prataculture, Gansu Agricultural University, Lanzhou 730070, Gansu, China;
2. Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China;
3. Institute of Gannan Agricultural Science, Hezuo 747000, Gansu, China

Received: 23-10-2021; Accepted: 27-12-2021; Published online: 20-01-2022

Foundation item: Science and Technology Program of Gansu Province (20YF3NA021); Special Fund for Modern Agricultural Technology System of China (CARS-05); Gansu Agricultural University Student Scientific Research Training Program (SRTP) Project (202102024)

*Corresponding author: LI Xueping, E-mail: lixueping@gsagr.ac.cn.

Abstract: [Background] Naked barley root rot caused by pathogenic fungus such as Fusarium avenaceum and Bipolaris sorokiniana are widely occurred, which poses a great threat to agricultural production and development in Tibetan areas. However, there is still a few research on its biocontrol by bacterial inoculant in China. [Objective] To screen strains with excellent disease-controlling and plant growth-promoting properties from the healthy naked barley rhizosphere. Furthermore, we explored the interaction effects among the bacteria to screen the excellent inoculant formulas, and the bacterial inoculants were made accordingly. After all, our ambition is to provide superior microbial inoculants which catering for the biocontrol of naked barley root rot, promoting the crop yield as well. [Methods] Firstly, we used the selective media to screen growth-promoting strains and plate confrontation method to screen the disease-controlling strains. After determining the pathogenicity of the bacteria by root irrigation and foliar inoculation, the nitrogen fixation capacities, phosphorus dissolution capacities, and IAA secretion capacities of them were determined by acetylene reduction method, molybdenum blue colorimetric method and high performance liquid chromatography, respectively. Additionally, the bacteria were identified by 16S rRNA gene sequence analysis. Finally, the biocontrol effects of the inoculants were measured by field test and evaluated by TOPSIS comprehensive analysis method. [Results] A total of 23 strains with nitrogen-fixing and phosphorus-solubilizing abilities were isolated in the initial screening, and 6 bacteria among them with eminent antagonistic ability, including 5 organophosphorus solubilizing strains, 3 inorganic phosphorus solubilizing strains and 3 nitrogen-fixing strains, all of which secreted IAA. Besides, the pathogenicity of the bacteria showed no pathogenicity to common crops in the sampling area, such as naked barley, oat, rapeseed and pea. According to the identification result, the bacteria isolates include 2 Bacillus subtilis, 1 Bacillus pumilus, 1 Bacillus cereus, 1 Pseudomonas fluorescens and 1 Acinetobacter sp. As a result, we firstly optimized 7 combinations (SC1−SC7) and then selected the best 4 (SC2, SC4, SC6, SC7) as inoculant formulas. Moreover, they were all made into liquid, powder and accumulative bacterial inoculant severally. Eventually, the field plot biocontrol determination showed SC7 (Bacillus pumilus Xpq-3, Bacillus cereus Xpq-15 and Acinetobacter sp. Xpq-21) had the best biocontrol and plant growth-promoting effects. [Conclusion] It's clear that there are amount of biocontrol and growth-promoting strains in the naked barley rhizosphere soil. In addition, the microbial inoculant made by them have excellent biocontrol effects.

Keywords: naked barley    root rot    biocontrolbacterium    plant growth-promoting rhizobacteria (PGPR)    

青稞(Hordeum vulgare L. var. nudum Hook. f.)是我国西北高寒地区主要栽培作物,种植面积约占青藏高原地区耕地总量的70%[]。近年来甘肃省甘南藏族自治州年均播种面积达15 300 hm2,面积及年产量居甘南州农作物首位[-]。青稞富含多种营养物质和矿质元素[],对动物机体组织营养和调节具重要意义[],为藏区农牧民的饮食及畜牧业发展提供了重要保障[]。根腐病是大麦类作物最常见的土传真菌病害之一,其病原菌主要寄居于植株根围土壤中,隐蔽性、生存力及侵染性极强,可在根围土壤中长期存活和累积[]。引起青稞根腐病发病的病原菌种类多样,本课题组先后报道了引起青稞根腐病的病原菌微座孢(Microdochium bolleyi)、麦根腐平脐蠕孢(Bipolaris sorokiniana)、链格孢(Alternaria alternata)、燕麦镰孢(Fusarium avenaceum)、木贼镰孢(Fusarium equiseti)、锐顶镰孢(Fusarium acuminatum)和粉红粘帚霉(Clonostachys rosea),其中燕麦镰孢和麦根腐平脐蠕孢是引起青稞根腐病的2种主要病原菌,分布广泛且危害严重[-]。

受高原地区气候和地形等自然条件限制,以及农药化肥等大量施用和长期连作等影响,甘南地区青稞土壤根围微生物群落结构失衡,病原菌在青稞根围大量积累,致使青稞根腐病发病率高达20%[],其有效防控手段的研究迫在眉睫。目前,农业防治易受自然条件、人为管理措施等的限制,防治可控性差且成本较高[];化学防治是当前普遍采用的手段,但病原菌极易产生抗药性,而且毒性较高的化学药剂会对生态环境产生难以逆转的破坏[];筛选高抗优质品种能绿色有效地防治青稞根腐类病害,但选育周期较长,难解燃眉之急[]。利用微生物菌剂进行生物防治则具有筛选周期短、可控性好、成本低、安全友好等特点,而且对植株生长发育具有一定促进作用[]。如陈长卿等[]发现生防菌剂对烟草镰孢根腐病田间防效达43%−70%,而且对烟草根、茎、叶的生长具有不同程度的促生作用;王梦园等[]将筛选得到的3株防病促生菌株复合处理后得到一种对草莓根腐病田间防效达57%−66%并使草莓大幅增产的菌剂。

鉴于此,针对青稞生长的环境条件研发优良的微生物菌剂来防治根腐病不失为一种有效的手段。目前国内外有关青稞根腐病防病促生菌剂的报道较少。本研究以优势病原燕麦镰孢(F. avenaceum)和麦根腐平脐蠕孢(B. sorokiniana)引起的青稞根腐病为防治对象,从健康青稞植株根围筛选具促生能力的菌株,测定其抑菌能力,得到优良菌株,研究其促生特性和致病性,并进行鉴定。最后通过研究菌株间的互作效应,筛选优良菌剂配方,制作菌剂,田间小区测定其防病促生特性,筛选得到优良的青稞根腐病防病促生菌剂,以期为青稞根腐病的防治及增产提供优质菌剂资源。

1 材料与方法 1.1 试验材料

青稞品种为甘青8号、油菜品种为甘南6号,均由甘南州农科所提供;燕麦品种为白燕2号、豌豆品种为草原3号,购买于甘肃省农业科学院种子市场。

固氮菌筛选采用无氮培养基(nitrogen free medium,NFM),溶磷菌株的筛选采用无机磷培养基(pikovaskaia’s,PKO)和蒙金娜有机磷培养基;分泌吲哚乙酸(indole-3-acetic acid,IAA)能力的测定采用加色氨酸的低盐蔗糖(sucrose minimal salts,SMS)培养基;抑菌特性测定采用马铃薯葡萄糖琼脂(potato dextrose agar,PDA)培养基;菌株保藏采用营养琼脂(nutrient agar,NA)培养基[-]。

燕麦镰孢(Fusarium avenaceum)和麦根腐平脐蠕孢(Bipolaris sorokiniana)均为本课题组前期研究中分离所得。

1.2 样品采集

于2018年6−8月赴甘南藏族自治州合作市采集苗期、成株期健康青稞植株根围土壤样品13份,低温运输至实验室备用[]。

1.3 菌株筛选

从采集所得青稞样品根表轻轻刷下土壤,称取1.0 g,加入9 mL超纯水,振荡均匀,静置后吸取1 mL上清液,顺浓度梯度稀释至1×10−5。用无菌移液枪分别吸取100 μL稀释液涂布NFM平板、PKO平板和蒙金娜有机磷平板,每样品各10个重复,置于30 ℃恒温培养箱中培养5−7 d。挑取NFM平板上的单菌落并采用平板划线法纯化得到固氮菌株;观察PKO平板、蒙金娜有机磷平板上单菌落周围是否有溶磷圈形成,采用划线法对有溶磷圈的单菌落进行纯化,纯化后采用点接法接种于相应的PKO平板和蒙金娜有机磷平板,培养5 d后,测量其溶磷圈直径[]。

以青稞根腐病主要病原菌燕麦镰孢(Fusarium avenaceum)和麦根腐平脐蠕孢(Bipolaris sorokiniana)为靶标病原,利用平板对峙法对筛选出的固氮和溶磷菌株进行体外拮抗病原菌能力测定,以仅接靶标病原的平板为对照,每株菌3个重复,25 ℃培养7 d,测量菌落直径,计算抑制率[]。抑制率=(对照菌落直径–处理菌落直径)/对照菌落直径×100%。

选取优良的拮抗菌株,测定其固氮能力、溶磷能力和分泌植物激素IAA能力。菌株固氮能力的测定采用乙炔还原法,以固氮酶活性表示;溶磷能力的测定采用钼蓝比色法;分泌植物激素IAA能力的测定采用高效液相色谱法[]。最后分别选择青稞、燕麦、油菜、豌豆等采样区常见作物为目标作物,将浓度为1×108 CFU菌液分别灌根(10 mL/株)和叶面接种(1 mL/叶片)测试其致病性[]。

1.4 菌株鉴定

采用DNA提取试剂盒(OMEGA公司)提取优良防病促生菌株的DNA,琼脂糖凝胶电泳法分析DNA的纯度。选用16S rRNA基因扩增通用引物27F/1492R (上海派森诺生物科技股份有限公司),序列分别27F:5′-GGTTACCTTGT TACGACTT-3′;1492R:5′-GGTTACCTTGTTA CGACTT-3′。参照李雪萍[]的方法进行PCR扩增。扩增产物检测合格后送至上海派森诺生物科技股份有限公司进行测序。最后将所获得的序列在NCBI中进行BLAST同源性比对,并用MEGA 7.0中的UPGMA方法构建系统发育树,bootstrap 1 000重复检验其可信度[-]。

1.5 菌株互作效应测定及菌剂制作

将优良防病促生菌株在LB平板活化后,两两进行平板互作实验,通过直观观察及测定菌落直径确定各菌株间是否有拮抗作用。将互相无拮抗作用的各菌株随机组合接入LB液体培养基,每个组合3个重复,28 ℃、150 r/min摇床培养36−48 h后,取1 mL浓度为1×108 CFU的菌液分别接入NFM、PKO、SMS及蒙金娜有机磷培养液中,按1.3中的方法测定其溶磷、固氮、分泌IAA特性,得到各菌株组合互作效应结果,选取特性优良的菌株组合。将浓度为1×108 CFU优良组合各菌株发酵液按1:1的比例混匀,添加表面活性剂1%,保护剂5%,抗氧化剂1%,按照相关制作工艺(专利号:201910981189.X,202010249287.7)发酵制作[-]。

1.6 田间防效测定 1.6.1 试验地概况

试验设在位于合作市卡加曼乡新集村的甘南州农业科学研究所综合试验站试验地,海拔2 737 m,年平均气温3.0 ℃,年降水量639.8 mm左右,无霜期109 d左右,耕种亚高山草甸草原土,旱川地,地力中等,前茬为油菜。2019年结合犁地施有机肥1 200 kg/hm2,播种时施入磷酸二铵225 kg/hm2、尿素150 kg/hm2作基肥。

1.6.2 试验设计

选用甘青8号作为试验品种,田间小区设3组对照:空白对照(CK1)、奥拜瑞拌种对照(CK2)和枯草芽孢杆菌拌种对照(CK3),自制的4种菌剂(SC2、SC4、SC6、SC7)的3种剂型(液剂、粉剂、颗粒剂)为试验组,共15个处理,每个处理的3个重复随机区组排列,并设保护行。试验小区面积10 m2 (4 m×2.5 m),10行区,条播,行距0.25 m,播种深度3−5 cm,播种量为450万粒/hm2小区下籽量4 500粒,播种前拌种处理青稞种子,液剂直接按照菌剂: 种子=1:5 (重量比)拌种,粉剂和颗粒剂按照菌剂: 种子=1:15 (重量比)用凉开水融化后拌种。待其晾干后于2019年4月5日播种。

1.6.3 田间管理与统计

各小区青稞于2019年4月21日−24日出苗,6月15日−21日抽穗,5月30日中耕除草,并将数次拔草贯穿于青稞试验整个生育期间,精细管理,抽穗后观察记载青稞根腐病的发病情况,以及株高、穗长等农艺性状,于8月25日统计其千粒重、产量等,最后综合分析评价最佳菌剂配方及剂型。

1.7 数据处理与分析

采用Excel 2007进行数据整理。采用DPS 15.10中Duncan新复极差法进行差异显著性分析(P < 0.05),TOPSIS分析法进行综合分析。运用ClustalX 1.83[]和MEGA 7.0完成基因序列处理及系统发育树构建。

2 结果与分析 2.1 菌株特性

共筛选得到23株具有固氮和溶磷能力的菌株,并从中筛选出6株拮抗性能优良的菌株(),其中菌株Xpq-15对燕麦镰孢抑制效果最为明显,抑制率达86%,Xpq-3对麦根腐平脐蠕孢抑制率高达89%,Xpq-1对其抑制率最低,为30%。

表 1 优良菌株对病原菌的拮抗效果 Table 1 Antagonistic effects of excellent bacterial strains on pathogenic bacteria

菌株编号
Strain No.
  对燕麦镰孢抑菌率
Inhibition rate against Fusarium avenaceum (%)
  对麦根腐平脐蠕孢抑菌率
Inhibition rate against Bipolaris sorokiniana (%)
 
Xpq-1   56.76±4.97b   30.22±2.48d  
Xpq-3   46.79±0.50c   89.32±0.55a  
Xpq-7   8.44±0.25f   62.74±0.38b  
Xpq-8   26.97±0.13d   46.77±0.40c  
Xpq-15   86.39±0.46a   77.21±0.05ab  
Xpq-21   13.54±0.67e   65.42±2.70b  
注: 不同小写字母表示差异显著(P < 0.05)。下同
Note: Different lowercase letters mean significant difference (P < 0.05). The same below.
 

如所示,不同菌株D/d值、pH和溶磷能力不同,而且差异显著(P < 0.05),培养液pH在4.34−5.29之间。溶无机磷菌株D/d值在1.67−1.94之间,溶磷量在84.89−485.85 µg/mL之间,其中,Xpq-21溶无机磷能力最强,为485.85 µg/mL,其培养液酸性也较强,pH为4.61。溶有机磷菌株D/d值在1.59−1.75之间,溶磷量在32.61−66.32 µg/mL之间,Xpq-3的D/d值和溶有机磷能力均最大,分别为1.75和66.32 µg/mL,其pH值最小,为4.69。菌株Xpq-3、Xpq-7和Xpq-15能同时溶解无机磷和有机磷,而Xpq-1无溶磷能力。6株菌固氮酶活性差异显著(P < 0.05),菌株Xpq-15固氮酶活性最高,达2 970.17 nmol-C2H4/(h·mL),其次是菌株Xpq-1,达1 495.91 nmol-C2H4/(h·mL),其余菌株固氮酶活性均小于1 000 nmol-C2H4/(h·mL),Xpq-8无固氮能力。同时,不同菌株分泌IAA能力也存在显著差异(P < 0.05),Xpq-1分泌IAA能力最强,为67.66 µg/mL,Xpq-15分泌IAA量最小,为6.39 µg/mL。

表 2 优良菌株的促生特性 Table 2 Growth-promoting properties of excellent bacterial strains

菌株编号
Strain No.
  溶无机磷
Solution of inorganic phosphorus
 
  溶有机磷
Solution of organic phosphorus
  固氮酶活性
Nitrogenase activity (nmol-C2H4/(h·mL))
  IAA
(µg/mL)
 
D/d   pH   溶磷能力
Phosphate solubilizing capacity (µg/mL)
  D/d   pH   溶磷能力
Phosphate solubilizing capacity (µg/mL)
 
Xpq-1   /   /   /   /   /   /   1 495.91±58.61b   67.66±0.47a  
Xpq-3   1.70±0.01c   5.18±0.01a   84.89±0.54e   1.75±0.03a   4.69±0.01c   66.32±1.04a   855.97±6.22c   26.17±0.85c  
Xpq-7   1.67±0.02c   4.94±0.02b   124.97±2.57d   1.59±0.02c   5.29±0.04a   51.7±0.39b   240.65±13.79d   35.38±0.65b  
Xpq-8   1.94±0.04a   4.34±0.02d   363.88±25.54c   /   /   /   /   9.18±0.05e  
Xpq-15   1.75±0.03b   4.66±0.06c   429.92±13.30b   1.66±0.01b   4.91±0.04b   32.61±1.29c   2 970.17±25.10a   6.39±0.12f  
Xpq-21   1.92±0.01a   4.61±0.09c   485.85±7.51a   /   /   /   81.89±2.24e   15.66±0.41d  
注:/:该菌株无此种功能
Note: /: The strain has no such function.
 

无论是根系还是叶面接种6株优良菌株均未导致青稞、燕麦、油菜和豌豆发病。

2.2 分子鉴定的菌株种类

在NCBI中对6株菌进行BLAST比对,选取相似度为100%模式种序列作为参比序列,以大肠杆菌模式种[Escherichia coli JCM 1649 (NR112558.1)]作为外群,构建系统发育树(),发现Xpq-1与模式种NBRC 13719 (NR112629.1)的遗传距离为0,1 000次重复自展支持率为70,Xpq-7与模式种ATCC 19659 (MN456847.1)的遗传距离为0,自展支持率为99,鉴定为枯草芽孢杆菌(Bacillus subtilis),提交至GenBank的登录号为MK184558和MK183007。Xpq-3为短小芽孢杆菌(Bacillus pumilus),Xpq-8为荧光假单胞菌(Pseudomonas fluorescens)、Xpq-15为蜡样芽孢杆菌(Bacillus cereus)、Xpq-21为不动杆菌(Acinetobacter sp.),遗传距离均为0,1 000次重复自展支持率均为99,提交至GenBank的登录号分别为MK184561、MK183008、MK184559和MK184560。

 
图 1 基于16S rRNA基因构建的系统发育树 Figure 1 Phylogenetic tree constructed based on 16S rRNA gene.  

 

2.3 菌株互作效应及菌剂

将防病促生特性优良的菌株进行组合,得到7种性能优良组合(SC1−SC7),如所示,本研究各菌株间均无拮抗作用,而且不同组合溶磷能力、固氮酶活性、分泌IAA能力均差异显著(P < 0.05)。SC7溶无机磷能力最强,为889.55 µg/mL,SC3最弱,为443.38 µg/mL;SC4溶有机磷能力最强,为99.62 µg/mL,SC3最弱,为33.64 µg/mL,而其余溶有机磷量均在77.89−90.62 µg/mL之间;除SC1固氮酶活性最弱,为462.35 nmol-C2H4/(h·mL),SC5不足1 000 nmol-C2H4/(h·mL),其余均在1 085.20 nmol- C2H4/(h·mL)及以上,其中SC7固氮酶活性最高,为4 402.53 nmol-C2H4/(h·mL);各组合分泌IAA含量在45.87–99.91 µg/mL之间,其中SC3最多,为99.91 µg/mL,SC1最少,为45.87 µg/mL。最后,结合所筛选的最优组合菌剂配方,利用相关发酵工艺(专利号:201910981189.X,202010249287.7),形成4种类型(SC2、SC4、SC6、SC7)和3种剂型(液剂、粉剂、颗粒剂)的菌剂。

表 3 优良菌株组合的互作效应 Table 3 Interaction effect of different excellent strains combinations

菌株组合
Strains combination
  溶无机磷
Solution of inorganic phosphorus (µg/mL)
  溶有机磷
Solution of organic phosphorus (µg/mL)
  固氮酶活性
Nitrogenase activity (nmol-C2H4/(h·mL))
  IAA (µg/mL)  
SC1 (Xpq-7+Xpq-21)   600.99±25.28c   85.62±0.72c   462.35±8.61g   45.87±0.23g  
SC2 (Xpq-3+Xpq-7+Xpq-8)   593.42±22.42d   78.63±0.56e   1 085.20±18.37e   72.39±0.16e  
SC3 (Xpq-1+Xpq-15)   443.38±20.31g   33.64±0.61g   1 198.46±23.79d   99.91±0.42a  
SC4 (Xpq-1+Xpq-3+Xpq-15)   527.61±24.79e   99.62±1.01a   1 672.53±19.84c   63.54±0.19f  
SC5 (Xpq-3+Xpq-21)   450.29±22.26f   82.35±0.82d   996.32±11.59f   77.21±0.25d  
SC6 (Xpq-1+Xpq-3+Xpq-8+Xpq-15)   801.63±26.13b   77.89±0.66f   2 257.45±29.33b   80.06±0.34c  
SC7 (Xpq-3+Xpq-15+Xpq-21)   889.55±24.11a   90.62±0.89b   4 402.53±35.64a   90.08±0.44b  

2.4 菌剂田间防效

统计所有处理青稞的株高、穗长、单株粒重、千粒重、小区产量及根腐病发病率发现(),青稞株高在92.4−100.2 cm之间,穗长在4.61−6.17 cm之间,千粒重在37.7−45.8 g之间。统计小区产量发现,SC2液剂、SC4颗粒剂、SC6颗粒剂、SC7液剂4组菌剂处理小区产量高于3组对照,增幅在0.2%−14.9%之间,其中,施用颗粒剂SC4产量最高,产量为8.66 kg,其次是施用颗粒剂SC6,产量为8.43 kg,较对照增产11.9%。与空白对照(CK1)相比,其他菌剂也使青稞根腐病的发生率有所降低,降幅在0.66%−5.00%之间,除粉剂SC6外,其余菌剂处理根腐病的发生率均与空白对照(CK1)差异显著。基于千粒重、产量及根腐病的发生率进行TOPSIS综合分析发现,液体菌剂SC7最优,统计量为0.89,颗粒剂SC6次之,统计量为0.87,各处理的综合排名顺序为:液剂SC7 > 颗粒剂SC6 > 颗粒剂SC7 > 液剂SC4 > 粉剂SC7 > 粉剂SC2 > 粉剂SC4 > 颗粒剂SC4 > 液剂SC2 > 液剂SC6 > 颗粒剂SC2 > 粉剂SC6。

表 4 各菌剂效果 Table 4 The effects of the microbial agents

处理
Treatment
  株高
Plant height (cm)
  穗长
Panicle length (cm)
  千粒重
Thousand kernel weight (g)
  小区产量
Grain yield per plot (kg)
  根腐病发病率
Incidence of root rot (%)
  TOPSIS综合分析
TOPSIS comprehensive analysis
 
统计量
Statistic
  排名
Ranking
 
CK1   97.5±2.64a   5.62±0.21ab   38.7±0.06ef   7.28±0.43a   8.00±1.00a   0.02   15  
CK2   97.9±6.89a   5.26±0.43ab   45.8±0.35a   7.78±1.96a   5.33±0.57bc   0.34   10  
CK3   93.9±8.13a   5.58±0.42ab   44.0±0.35ab   7.56±0.71a   7.67±1.53ab   0.15   14  
SC2 (DP)   95.8±5.60a   5.64±0.65ab   45.7±0.87a   7.71±0.39a   4.67±1.15c   0.45   6  
SC2 (Liq)   93.3±4.25a   5.66±0.75ab   41.7±0.10bcd   8.27±2.12a   5.00±1.00bc   0.38   9  
SC2 (GR)   94.5±8.32a   6.05±0.83a   37.7±0.64f   7.26±0.17a   5.33±2.89bc   0.28   12  
SC4 (DP)   92.4±10.64a   4.61±0.85b   42.4±0.81bcd   7.27±0.17a   4.67±1.53c   0.42   7  
SC4 (Liq)   99.7±4.65a   6.17±0.37a   42.9±0.87bc   7.38±0.15a   4.00±1.00c   0.58   4  
SC4 (GR)   99.0±3.07a   5.86±0.15a   40.4±0.58cde   8.66±1.78a   5.00±1.73bc   0.39   8  
SC6 (DP)   95.4±3.94a   5.57±0.97ab   41.5±1.44bcd   7.42±0.43a   5.67±0.57abc   0.25   13  
SC6 (Liq)   95.6±4.50a   6.01±0.88a   42.6±0.87bc   7.65±0.43a   5.33±1.53bc   0.31   11  
SC6 (GR)   96.9±3.90a   5.72±0.31a   39.9±1.33def   8.43±2.17a   3.00±1.00c   0.87   2  
SC7 (DP)   94.5±4.92a   5.58±0.43ab   44.0±0.35ab   7.45±0.42a   4.33±2.08c   0.51   5  
SC7 (Liq)   92.8±5.92a   5.61±0.57ab   41.6±0.46bcd   8.24±2.15a   3.00±1.00c   0.89   1  
SC7 (GR)   100.2±3.50a   5.88±0.60a   41.9±1.21bcd   7.48±0.27a   3.67±1.15c   0.67   3  
Note: Different combinations of uppercase letters in the treatment column represent different dosage forms of the microbial agents. DP: Dustable powder; Liq: Liquids; GR: Granules.  

3 讨论与结论

定殖在植物根围的微生物是其根围微生态系统的重要有机组成,对提高植物抗病性、促进植物生长发育及植物-土壤-微生物间物质循环转化起着关键的调控作用[]。本研究从青稞根围筛选得到6株对燕麦镰孢和麦根腐平脐蠕孢有良好抑制作用的菌株,而燕麦镰孢和麦根腐平脐蠕孢是众多作物根腐类病害的病原,因此其可能对其他作物根腐类病害也有一定的抑制效果,生防潜力优良,这与秦盛等[]研究结果一致。另外,本研究中6株优良菌株溶磷能力大小与溶磷圈大小间无规律可循,但总体上溶磷能力越强,其pH具有明显下降趋势,这与张廷锐等[]研究结果一致,表明单一的平板特性并不能反映菌株实际促生能力强弱,而且进一步验证了菌株溶磷能力强弱与产生不同酸性代谢物质有关。

国内外大量实践证明“以菌治菌”的微生物防治植物病害手段成效明显[-]。国外有关青稞根腐病防病促生菌剂研究较国内起步早,Achatz等[]利用担子菌门梨状孢子菌(Basidiomycete piriformospora)孢子对青稞根系进行预处理,结果发现可以有效防治青稞根腐病引起的根组织坏死及发育不良等症状。国内有岳海梅等[]利用毛壳菌(Chaetomium globosum)及其发酵粗提物对青稞根腐病病原菌麦根腐平脐蠕孢进行了拮抗和室内防效实验,发现其抑菌率达64%,防效达62%。然而单一的菌株在实际应用过程中效果并不理想[],因此,本研究在菌剂复配前进行了互作效应研究,并测定了相应功能特性,得到7种优良组合,并选取其中4种最优组合作为菌剂配方,但本研究是按照1:1比例将发酵液进行了组合,并未进行其最佳配比研究,而合适配比能使菌剂的防病促生作用得到有效提升[],因此,本研究的各菌剂配方还有待进一步优化以提高其防病促生效能。

因大田环境复杂,室内防效不能很好地反应菌剂效果,本研究采用田间试验测定评判菌剂优劣。结果发现,不同种类和剂型的菌剂对青稞防病促生效果不一,菌剂施用后青稞植株株高、千粒重和产量均有不同程度地提升,根腐病发病率呈明显下降,但仅凭某一指标或人为观测难以准确确定哪种菌剂最为优良,而且目前缺乏相关田间试验综合评价标准,因此引入逼近理想的TOPSIS综合分析法模型,克服了传统数据统计存在的缺陷,其对样本量及样本规律性要求不高[],更具有科学性和准确性,结果表明所筛选青稞专用促生防病菌剂Ⅱ型防病促生效果最佳,其协同效应良好。本研究菌剂施加方式为拌种处理,而且所筛菌株均来自样区,具有本土性,极大程度保证菌株在植株根围土壤中的适应性和定殖。然而其定殖能力是否良好及作用是否稳定,还需要进一步研究,因为菌株耐受性、繁殖能力等和土壤微生态有关[]。另菌剂施用方式、施用阶段的施用量有待进一步研究优化,如Molinari[]研究表明生防菌剂用量及所处理植物的生长阶段不同,其效果存有高度变异性,甚至可能对植株的生长造成不良影响,而合适的使用方式、时间和使用量能使菌剂的防病促生效果进一步提升。

REFERENCES  

Zhao Y, Ma HD, Ren YL, Sun SN, Zhao CZ, Li P. Physiological mechanism of hydrogen sulfide alleviating senescence of highland barley leaves induced by cadmium stress[J]. Molecular Plant Breeding, 2021. https://kns.cnki.net/kcms/detail/46.1068.S.20210909.1451.020.html (in Chinese)
赵艳, 马海东, 任玉玲, 孙胜男, 赵成周, 李萍. 硫化氢缓解镉胁迫诱导的青稞叶片衰老的生理机制[J]. 分子植物育种, 2021. https://kns.cnki.net/kcms/detail/46.1068.S.20210909.1451.020.html

 
 
 

Xu DL, Liu MJ, Wang H, Guo JW, Hu ZQ, Dan ZJ, Yan CM, Sang AP, Li FQ, Zhou LL. Effects of different fertilizers and fertilization methods on the quantitative characters and yield of hulless barley[J]. Barley and Cereal Sciences, 2018, 35(4): 24-26, 34. (in Chinese)
徐冬丽, 刘梅金, 王贺, 郭建炜, 胡再青, 旦知吉, 闫春梅, 桑安平, 李风庆, 周兰兰. 不同肥料及施肥方式对青稞农艺性状和产量的影响[J]. 大麦与谷类科学, 2018, 35(4): 24-26, 34.

 
 
 

Hu ZQ, Liu MJ, Xu DL, Wang GP, Xiao YS, Ma FQ, Ding YL. Reportioning test of planting density and fertilizer of barley cultivar Ganqing 6 in chilling and humid region of high-elevation of Gannan[J]. Gansu Agricultural Science and Technology, 2018(11): 10-12. (in Chinese)
胡再青, 刘梅金, 徐冬丽, 王国平, 萧云善, 马福全, 丁耀录. 甘南高寒阴湿区甘青6号青稞种植密度与肥料配比试验初报[J]. 甘肃农业科技, 2018(11): 10-12. DOI:10.3969/j.issn.1001-1463.2018.11.004

 
 
 

Zhang TW, Wang Q, Li J, Zhao SS, Qie MJ, Wu XL, Bai Y, Zhao Y. Study on the origin traceability of tibet highland barley (Hordeum vulgare L. ) based on its nutrients and mineral elements[J]. Food Chemistry, 2020, 346(6): 128928.

 
 
 

Liu ZH, Li B. Procyanidin B1 and p-poumaric acid from highland barley grain showed synergistic effect on modulating glucose metabolism via IRS-1/PI3K/Akt pathway[J]. Molecular Nutrition & Food Research, 2021, 65: 2100454.

 
 
 

Dong SK, Ren JZ, Fang XL, Yang MY, Zhang J, Qi BY. Agriculture ethnic degree of animal husbandary[J]. Pratacultural Science, 2018, 35(9): 2299-2305. (in Chinese)
董世魁, 任继周, 方锡良, 杨明岳, 张静, 祁百元. 种植业的农业伦理学之度[J]. 草业科学, 2018, 35(9): 2299-2305.

 
 
 

Vaish SS, Ahmed SB, Prakash K. First documentation on status of barley diseases from the high altitude cold arid Trans-Himalayan Ladakh region of India[J]. Crop Protection, 2011, 30(9): 1129-1137. DOI:10.1016/j.cropro.2011.04.015

 
 
 

Li XP, Xu SY, Wang XM, Zhang YX, Fan YX, Qi YH, Li MQ. Field survey and pathogen identification of naked barley root rot in Qinghai province[J]. Journal of Plant Protection, 2021, 48(4): 757-765. (in Chinese)
李雪萍, 许世洋, 汪学苗, 张怡忻, 范雨轩, 漆永红, 李敏权. 青海省青稞根腐病调查及病原菌鉴定[J]. 植物保护学报, 2021, 48(4): 757-765.

 
 
 

Li XP, Li JH, Qi YH, Guo C, Li X, Li MQ. Identification of the pathogens causing m icrodochium root rot on naked barley[J]. Acta Phytopathologica Sinica, 2019, 49(5): 705-710. (in Chinese)
李雪萍, 李建宏, 漆永红, 郭成, 李潇, 李敏权. 青稞微座孢根腐病病原鉴定[J]. 植物病理学报, 2019, 49(5): 705-710.

 
 
 

Li XP, Liu MJ, Xu SY, Guo JW, Qi YH, Li MQ. Investigation and pathogen identification of common root rot of Qingke Barley (Hordeum vulgare var. nudum)[J]. Acta Prataculturae Science, 2021, 30(7): 190-198. (in Chinese)
李雪萍, 刘梅金, 许世洋, 郭建炜, 漆永红, 李敏权. 青稞普通根腐病的调查与病原鉴定[J]. 草业学报, 2021, 30(7): 190-198.

 
 
 

Li XP, Xu SY, Li JJ, Zhang YX, Qi YH, Wang XM, Jiang JJ, Fan YX, Li MQ. First report of root rot on naked barley (Hordeum vulgare L. var. nudum Hook. f. ) caused by Clonostachys rosea in Qinghai-Tibet Plateau, China[J]. Microbiology China, 2021, 49(2): 598-605.
李雪萍, 许世洋, 李建军, 张怡忻, 漆永红, 汪学苗, 蒋晶晶, 范雨轩, 李敏权. 一种由粉红粘帚霉引起的青稞根腐病[J]. 微生物学通报, 2021, 49(2): 598-605.

 
 
 

Pan XL, Dong FS, Wu XH, Xu J, Liu XG, Zheng YQ. Progress of the discovery, application, and control technologies of chemical pesticides in China[J]. Journal of Integrative Agriculture, 2019, 18(4): 840-853. DOI:10.1016/S2095-3119(18)61929-X

 
 
 

Tasawar A, Ahmad ZZ, Muhammad N, Sana A, Abbas BS. Weed antagonistic bacteria stimulate growth, physiology and yield of wheat (Triticum aestivum L. ) in multiple field experiments: a study of selectivity for sustainable weed control[J]. Environmental Technology & Innovation, 2021(24): 101974.

 
 
 

Huang Y, Dong HR, Shang MQ, Wang KJ. The link between functional genes and genetic improvement[J]. The Crop Journal, 2021, 9(3): 678-687. DOI:10.1016/j.cj.2021.03.004

 
 
 

Cucu MA, Gilardi G, Pugliese M, Matić S, Gisi U, Gullino ML, Garibaldi A. Influence of different biological control agents and compost on total and nitrification-driven microbial communities at rhizosphere and soil level in a lettuce Fusarium oxysporum f. sp. lactucae pathosystem[J]. Journal of Applied Microbiology, 2019, 126(3): 905-918. DOI:10.1111/jam.14153

 
 
 

Chen CQ, Chu YX, Xie Z, Cao ZM, Jiang Y, Sui C, Gao J. Control effect of biological fungicides on tobacco fusarium root rot and influence on agronomic traits of tobacco[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(6): 41-46. (in Chinese)
陈长卿, 褚逸轩, 谢昭, 曹哲铭, 姜云, 隋策, 高洁. 生物杀菌剂对烟草镰刀菌根腐病的防治效果及农艺性状的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(6): 41-46.

 
 
 

Wang MY, Du YQ, Cai WW, Wang ZH, Zhu JQ. Effect of complex antagonistic bacteria on controlling strawberry root rot[J]. Journal of Agricultural Science and Technology, 2020, 22(6): 100-110. (in Chinese)
王梦园, 杜延全, 蔡威威, 王子浩, 朱建强. 复合菌剂防治草莓根腐病的效果研究[J]. 中国农业科技导报, 2020, 22(6): 100-110.

 
 
 

Li HY, Jiang YM, Yao T, Hou D, Ma YC, Zhang HR. Isolation, screening, identification and growth promoting characteristics of plantgrowth promoting rhizobacteria of vegetable crops[J]. Journal of Plant Protection, 2018, 45(4): 836-845. (in Chinese)
李海云, 蒋永梅, 姚拓, 侯栋, 马亚春, 张惠荣. 蔬菜作物根际促生菌分离筛选、鉴定及促生特性测定[J]. 植物保护学报, 2018, 45(4): 836-845.

 
 
 

Zhang MQ, Chen YY, Zhang X, Deng H, Sun JG, Gao M, Bu N. Characterizations of rhizobacteria DD3 and their growth promoting effect on garlic seedlings[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 748-756. (in Chinese)
张梦琦, 陈云云, 张熙, 邓辉, 孙建光, 高淼, 卜宁. 多功能植物根际促生菌DD3的功能特性及对大蒜幼苗的促生效果[J]. 植物营养与肥料学报, 2017, 23(3): 748-756.

 
 
 

Bao SD. Soil Agricultural Chemical Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000: 79-86. (in Chinese)
鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2000: 79-86.

 
 
 

Wu ZJ, Li YY, Wang YJ, Yang L, Pan HQ, Xie ZK, Hu JC. Isolation and identification of an antagonistic bacterium against Fusarium on lily and its antifungal substances[J]. Microbiology China, 2015, 42(7): 1307-1320. (in Chinese)
武志江, 李业燕, 王亚军, 杨柳, 潘华奇, 谢忠奎, 胡江春. 百合枯萎病拮抗细菌的筛选、鉴定及其抑菌物质研究[J]. 微生物学通报, 2015, 42(7): 1307-1320.

 
 
 

Liu T, Yao T, Chen JG, Ma WB, Liu H, Ma CY, Jiang YM. Identification and study on the effects of plant growth promoting rhizobacteria of Carex enervis[J]. Acta Prataculturae Science, 2016, 25(12): 130-139. (in Chinese)
刘婷, 姚拓, 陈建纲, 马文彬, 刘欢, 马骢毓, 蒋永梅. 无脉苔草根际优良促生菌鉴定及其作用研究[J]. 草业学报, 2016, 25(12): 130-139. DOI:10.11686/cyxb2016026

 
 
 

Nawangsih AA, Meliah S, Wahyudi AT. Xanthomonas oryzae pv. oryzae the causal agent of bacterial leaf blight of rice: isolation, characterization, and study of transposon mutagenesis[J]. Makara Seri Sains, 2011, 15(1): 89-96.

 
 
 

Li XP. Naked barley root rot diseases and influence on its rhizosphere microecology in Qinghai-Tibet Plateau, China[D]. Lanzhou: Doctoral Dissertation of Gansu Agricultural University, 2017 (in Chinese)
李雪萍. 青藏高原青稞根腐类病害及其对根际土壤微生态的影响[D]. 兰州: 甘肃农业大学博士学位论文, 2017.

 
 
 

Li XF, Yu TC, Wang XM, Jiang XD, Yang JW, Feng Z, Wang JM. Assessment of genetic diversity and population structure of Sporisorium reilianum causing corn head smut using SSR markers in Shanxi[J]. Acta Phytopathologica Sinica, 2021, 51(6): 921-933. (in Chinese)
李新凤, 尉天春, 王雪梅, 姜晓东, 杨俊伟, 冯铸, 王建明. 山西玉米丝黑穗病菌SSR遗传多样性与群体结构分析[J]. 植物病理学报, 2021, 51(6): 921-933.

 
 
 

He SQ, Wen ZH, Bai B, Liu YG, Jing ZQ, Zhang HY. Pathogen of oat purple spot disease[J]. Mycosystema, 2021, 40(7): 1627-1638. (in Chinese)
何苏琴, 文朝慧, 白滨, 刘永刚, 荆卓琼, 张海英. 燕麦紫斑病的病原[J]. 菌物学报, 2021, 40(7): 1627-1638.

 
 
 

Li XP. The invention relates to a special microbial inoculum for controlling root rot disease of naked barley and a preparation method[P]. China, 201910981189. X. 2019.10. 16
李雪萍. 一种青稞专用根腐病防治菌剂及其制备方法[P]. 中国, 201910981189. X. 2019.10. 16

 
 
 

Li XP. The invention relates to a growth promoting microbial inoculum for barley crops and a preparation method and application[P]. China, 202010249287.7. 2020.4. 1
李雪萍. 一种大麦类作物专用的促生防病菌剂及其制备方法和应用[P]. 中国, 202010249287.7. 2020.4. 1

 
 
 

Goswami M, Deka S. Plant growth-promoting rhizobacteria-alleviators of abiotic stresses in soil: a review[J]. Pedosphere, 2020, 30(1): 40-61. DOI:10.1016/S1002-0160(19)60839-8

 
 
 

Qin S, Zhao LX, Chen Y, Zhao GZ, Li J, Zhu WY, Huang HY, Xu LH. Endophytic actinomycetes associated with medicinal plants: isolation, antimicribial activity and identification[J]. Microbiology China, 2009, 36(11): 1693-1699. (in Chinese)
秦盛, 赵立兴, 陈云, 赵国振, 李洁, 朱文勇, 黄海玉, 徐丽华. 药用植物内生放线菌的分离、筛选及活性菌株YIM 61470鉴定[J]. 微生物学通报, 2009, 36(11): 1693-1699.

 
 
 

Zhang TR, Jin W, Li T, Wei W, Miao L, Li LL. Screening of affinity phosphate-solubilizing bacteria from typical purple soiland its growth promoting effect[J]. Environmental Science & Technology, 2021, 44(6): 21-26. (in Chinese)
张廷锐, 金玮, 李婷, 魏巍, 李昌骏, 缪利, 李露露. 典型紫色土亲和性溶磷菌的筛选及促生效应研究[J]. 环境科学与技术, 2021, 44(6): 21-26.

 
 
 

Wang CS, Feng MG. Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests[J]. Biological Control, 2014(68): 129-135.

 
 
 

Nimali DS, Brooks S, Lumyong S, Hyde KD. Use of endophytes as biocontrol agents[J]. Fungal Biology Reviews, 2019, 33(2): 133-148. DOI:10.1016/j.fbr.2018.10.001

 
 
 

Achatz B, Rüden SV, Andrade D, Elke N, Jörn PK, Kogel KH, Franken P, Waller F. Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development[J]. Plant and Soil, 2010, 333(1/2): 59-70.

 
 
 

Yue HM, Zhuang H, Gong WF, Zhang XJ. Screening and identification of biological control Chaetomiun of root rot and take-all disease in hulless barley[J]. Journal of Triticeae Crops, 2017, 37(10): 1390-1397. (in Chinese)
岳海梅, 庄华, 巩文峰, 张新军. 青稞全蚀病和根腐病生防毛壳菌的筛选及鉴定[J]. 麦类作物学报, 2017, 37(10): 1390-1397. DOI:10.7606/j.issn.1009-1041.2017.10.17

 
 
 

Jin ZB, Xie L, Wang YS, Kong Y, Liu F, Zhu ZJ. Effects of different cultivation substrates on the tomato seedling mycorrhization and Meloidogyne incognita infestation under condition of inoculation with arbuscular mycorrhizal fungi[J]. Mycosystema, 2021, 40(5): 1087-1098. (in Chinese)
晋治波, 解玲, 王幼珊, 孔宇, 刘芳, 朱正杰. 不同基质中番茄菌根苗的培育及其抗南方根结线虫的效果[J]. 菌物学报, 2021, 40(5): 1087-1098.

 
 
 

Ye M, Tao T, Chen WX. Development and application of a phosphate-dissolving bacteria agent[J]. Journal of Zhejiang University: Agriculture and Life Science, 2010, 36(6): 657-661. (in Chinese)
叶明, 陶涛, 陈吴西. 一种解磷菌剂的研制及其应用效果[J]. 浙江大学学报(农业与生命科学版), 2010, 36(6): 657-661.

 
 
 

Zhou DX, Su Y, Ning YC, Rong GH, Wang GD, Liu D, Liu LY. Estimation of the effects of maize straw return on soil carbon and nutrients using response surface methodology[J]. Pedosphere, 2018, 28(3): 411-421. DOI:10.1016/S1002-0160(18)60024-4

 
 
 

Sardans J, Peñuelas J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system[J]. Plant Physiology, 2012, 160(4): 1741-1761. DOI:10.1104/pp.112.208785

 
 
 

Molinari S. Factors determining the variability of performance of bio-control agents against root-knot nematodes in vegetable plants[J]. Agronomy, 2021, 11(8): 1602. DOI:10.3390/agronomy11081602